Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Convergence in leaf size versus twig leaf area scaling: do plants optimize leaf area partitioning?

Identifieur interne : 001455 ( Main/Exploration ); précédent : 001454; suivant : 001456

Convergence in leaf size versus twig leaf area scaling: do plants optimize leaf area partitioning?

Auteurs : Duncan D. Smith [États-Unis] ; John S. Sperry [États-Unis] ; Frederick R. Adler [États-Unis]

Source :

RBID : pubmed:28028019

Descripteurs français

English descriptors

Abstract

BACKGROUND AND AIMS

Corner's rule states that thicker twigs bear larger leaves. The exact nature of this relationship and why it should occur has been the subject of numerous studies. It is obvious that thicker twigs should support greater total leaf area ([Formula: see text]) for hydraulical and mechanical reasons. But it is not obvious why mean leaf size ([Formula: see text]) should scale positively with [Formula: see text] We asked what this scaling relationship is within species and how variable it is across species. We then developed a model to explain why these relationships exist.

METHODS

To minimize potential sources of variability, we compared twig properties from six co-occurring and functionally similar species: Acer grandidentatum, Amelanchier alnifolia, Betula occidentalis, Cornus sericea, Populus fremontii and Symphoricarpos oreophilus We modelled the economics of leaf display, weighing the benefit from light absorption against the cost of leaf tissue, to predict the optimal [Formula: see text] combinations under different canopy openings.

KEY RESULTS

We observed a common [Formula: see text] by [Formula: see text] exponent of 0.6, meaning that [Formula: see text]and leaf number on twigs increased in a specific coordination. Common scaling exponents were not supported for relationships between any other measured twig properties. The model consistently predicted positive [Formula: see text] by [Formula: see text] scaling when twigs optimally filled canopy openings. The observed 0·6 exponent was predicted when self-shading decreased with larger canopy opening.

CONCLUSIONS

Our results suggest Corner's rule may be better understood when recast as positive [Formula: see text] by [Formula: see text] scaling. Our model provides a tentative explanation of observed [Formula: see text] by [Formula: see text] scaling and suggests different scaling may exist in different environments.


DOI: 10.1093/aob/mcw231
PubMed: 28028019
PubMed Central: PMC7296615


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Convergence in leaf size versus twig leaf area scaling: do plants optimize leaf area partitioning?</title>
<author>
<name sortKey="Smith, Duncan D" sort="Smith, Duncan D" uniqKey="Smith D" first="Duncan D" last="Smith">Duncan D. Smith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of Utah, Salt Lake City, UT 84112, USA ddsmith3@wisc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Utah, Salt Lake City, UT 84112</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sperry, John S" sort="Sperry, John S" uniqKey="Sperry J" first="John S" last="Sperry">John S. Sperry</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Utah, Salt Lake City, UT 84112</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Adler, Frederick R" sort="Adler, Frederick R" uniqKey="Adler F" first="Frederick R" last="Adler">Frederick R. Adler</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Utah, Salt Lake City, UT 84112</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28028019</idno>
<idno type="pmid">28028019</idno>
<idno type="doi">10.1093/aob/mcw231</idno>
<idno type="pmc">PMC7296615</idno>
<idno type="wicri:Area/Main/Corpus">001505</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001505</idno>
<idno type="wicri:Area/Main/Curation">001505</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001505</idno>
<idno type="wicri:Area/Main/Exploration">001505</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Convergence in leaf size versus twig leaf area scaling: do plants optimize leaf area partitioning?</title>
<author>
<name sortKey="Smith, Duncan D" sort="Smith, Duncan D" uniqKey="Smith D" first="Duncan D" last="Smith">Duncan D. Smith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of Utah, Salt Lake City, UT 84112, USA ddsmith3@wisc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Utah, Salt Lake City, UT 84112</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sperry, John S" sort="Sperry, John S" uniqKey="Sperry J" first="John S" last="Sperry">John S. Sperry</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Utah, Salt Lake City, UT 84112</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Adler, Frederick R" sort="Adler, Frederick R" uniqKey="Adler F" first="Frederick R" last="Adler">Frederick R. Adler</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Utah, Salt Lake City, UT 84112</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acer (anatomy & histology)</term>
<term>Acer (physiology)</term>
<term>Betula (anatomy & histology)</term>
<term>Betula (physiology)</term>
<term>Biomechanical Phenomena (MeSH)</term>
<term>Cornus (anatomy & histology)</term>
<term>Cornus (physiology)</term>
<term>Models, Biological (MeSH)</term>
<term>Plant Leaves (anatomy & histology)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Stems (anatomy & histology)</term>
<term>Plant Stems (physiology)</term>
<term>Populus (anatomy & histology)</term>
<term>Populus (physiology)</term>
<term>Rosaceae (anatomy & histology)</term>
<term>Rosaceae (physiology)</term>
<term>Symphoricarpos (anatomy & histology)</term>
<term>Symphoricarpos (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acer (anatomie et histologie)</term>
<term>Acer (physiologie)</term>
<term>Betula (anatomie et histologie)</term>
<term>Betula (physiologie)</term>
<term>Cornus (anatomie et histologie)</term>
<term>Cornus (physiologie)</term>
<term>Feuilles de plante (anatomie et histologie)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Phénomènes biomécaniques (MeSH)</term>
<term>Populus (anatomie et histologie)</term>
<term>Populus (physiologie)</term>
<term>Rosaceae (anatomie et histologie)</term>
<term>Rosaceae (physiologie)</term>
<term>Symphoricarpos (anatomie et histologie)</term>
<term>Symphoricarpos (physiologie)</term>
<term>Tiges de plante (anatomie et histologie)</term>
<term>Tiges de plante (physiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Acer</term>
<term>Betula</term>
<term>Cornus</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Rosaceae</term>
<term>Symphoricarpos</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Acer</term>
<term>Betula</term>
<term>Cornus</term>
<term>Plant Leaves</term>
<term>Plant Stems</term>
<term>Populus</term>
<term>Rosaceae</term>
<term>Symphoricarpos</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Acer</term>
<term>Betula</term>
<term>Cornus</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Rosaceae</term>
<term>Symphoricarpos</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Acer</term>
<term>Betula</term>
<term>Cornus</term>
<term>Plant Leaves</term>
<term>Plant Stems</term>
<term>Populus</term>
<term>Rosaceae</term>
<term>Symphoricarpos</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Models, Biological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Modèles biologiques</term>
<term>Phénomènes biomécaniques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND AND AIMS</b>
</p>
<p>Corner's rule states that thicker twigs bear larger leaves. The exact nature of this relationship and why it should occur has been the subject of numerous studies. It is obvious that thicker twigs should support greater total leaf area ([Formula: see text]) for hydraulical and mechanical reasons. But it is not obvious why mean leaf size ([Formula: see text]) should scale positively with [Formula: see text] We asked what this scaling relationship is within species and how variable it is across species. We then developed a model to explain why these relationships exist.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>To minimize potential sources of variability, we compared twig properties from six co-occurring and functionally similar species: Acer grandidentatum, Amelanchier alnifolia, Betula occidentalis, Cornus sericea, Populus fremontii and Symphoricarpos oreophilus We modelled the economics of leaf display, weighing the benefit from light absorption against the cost of leaf tissue, to predict the optimal [Formula: see text] combinations under different canopy openings.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>KEY RESULTS</b>
</p>
<p>We observed a common [Formula: see text] by [Formula: see text] exponent of 0.6, meaning that [Formula: see text]and leaf number on twigs increased in a specific coordination. Common scaling exponents were not supported for relationships between any other measured twig properties. The model consistently predicted positive [Formula: see text] by [Formula: see text] scaling when twigs optimally filled canopy openings. The observed 0·6 exponent was predicted when self-shading decreased with larger canopy opening.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our results suggest Corner's rule may be better understood when recast as positive [Formula: see text] by [Formula: see text] scaling. Our model provides a tentative explanation of observed [Formula: see text] by [Formula: see text] scaling and suggests different scaling may exist in different environments.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28028019</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>119</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2017</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Convergence in leaf size versus twig leaf area scaling: do plants optimize leaf area partitioning?</ArticleTitle>
<Pagination>
<MedlinePgn>447-456</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aob/mcw231</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND AND AIMS" NlmCategory="OBJECTIVE">Corner's rule states that thicker twigs bear larger leaves. The exact nature of this relationship and why it should occur has been the subject of numerous studies. It is obvious that thicker twigs should support greater total leaf area ([Formula: see text]) for hydraulical and mechanical reasons. But it is not obvious why mean leaf size ([Formula: see text]) should scale positively with [Formula: see text] We asked what this scaling relationship is within species and how variable it is across species. We then developed a model to explain why these relationships exist.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">To minimize potential sources of variability, we compared twig properties from six co-occurring and functionally similar species: Acer grandidentatum, Amelanchier alnifolia, Betula occidentalis, Cornus sericea, Populus fremontii and Symphoricarpos oreophilus We modelled the economics of leaf display, weighing the benefit from light absorption against the cost of leaf tissue, to predict the optimal [Formula: see text] combinations under different canopy openings.</AbstractText>
<AbstractText Label="KEY RESULTS" NlmCategory="RESULTS">We observed a common [Formula: see text] by [Formula: see text] exponent of 0.6, meaning that [Formula: see text]and leaf number on twigs increased in a specific coordination. Common scaling exponents were not supported for relationships between any other measured twig properties. The model consistently predicted positive [Formula: see text] by [Formula: see text] scaling when twigs optimally filled canopy openings. The observed 0·6 exponent was predicted when self-shading decreased with larger canopy opening.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our results suggest Corner's rule may be better understood when recast as positive [Formula: see text] by [Formula: see text] scaling. Our model provides a tentative explanation of observed [Formula: see text] by [Formula: see text] scaling and suggests different scaling may exist in different environments.</AbstractText>
<CopyrightInformation>© The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Duncan D</ForeName>
<Initials>DD</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Utah, Salt Lake City, UT 84112, USA ddsmith3@wisc.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sperry</LastName>
<ForeName>John S</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Adler</LastName>
<ForeName>Frederick R</ForeName>
<Initials>FR</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>12</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D031002" MajorTopicYN="N">Acer</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029662" MajorTopicYN="N">Betula</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001696" MajorTopicYN="N">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029768" MajorTopicYN="N">Cornus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027824" MajorTopicYN="N">Rosaceae</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031240" MajorTopicYN="N">Symphoricarpos</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Allometry</Keyword>
<Keyword MajorTopicYN="N">Corner’s rule</Keyword>
<Keyword MajorTopicYN="N">economics</Keyword>
<Keyword MajorTopicYN="N">intraspecific</Keyword>
<Keyword MajorTopicYN="N">leaf size</Keyword>
<Keyword MajorTopicYN="N">light interception</Keyword>
<Keyword MajorTopicYN="N">optimization</Keyword>
<Keyword MajorTopicYN="N">self-shading</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>07</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>09</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>09</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28028019</ArticleId>
<ArticleId IdType="pii">mcw231</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mcw231</ArticleId>
<ArticleId IdType="pmc">PMC7296615</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ann Bot. 2009 Mar;103(5):795-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 May;135(4):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2003 Oct;90(10):1502-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2006 Jun;93(6):829-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21642145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jan;193(2):397-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22066945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2007 Sep 7;274(1622):2109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17591590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Feb;205(3):973-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25318596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Physiol. 1982 Apr;48(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7111915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Dec;37(12):2679-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25041417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jun;166(3):791-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15869642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Plant Biol. 2012 Jun;39(5):394-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32480791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2011 Dec 16;107(25):258101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22243116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2009 Jan;122(1):41-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18690411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 1976 Jul 7;59(2):443-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">957700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1978 Feb 24;199(4331):888-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17757590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Aug;100(2):283-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2009 Mar;12(3):210-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19141123</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Utah</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Utah">
<name sortKey="Smith, Duncan D" sort="Smith, Duncan D" uniqKey="Smith D" first="Duncan D" last="Smith">Duncan D. Smith</name>
</region>
<name sortKey="Adler, Frederick R" sort="Adler, Frederick R" uniqKey="Adler F" first="Frederick R" last="Adler">Frederick R. Adler</name>
<name sortKey="Sperry, John S" sort="Sperry, John S" uniqKey="Sperry J" first="John S" last="Sperry">John S. Sperry</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001455 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001455 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28028019
   |texte=   Convergence in leaf size versus twig leaf area scaling: do plants optimize leaf area partitioning?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28028019" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020